

Cambridge International Examinations

Cambridge Ordinary Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 5070/21

Paper 2 Theory

October/November 2017
1 hour 30 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Section A

Answer all questions.

Write your answers in the spaces provided in the Question Paper.

Section B

Answer any three questions.

Write your answers in the spaces provided in the Question Paper.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 19 printed pages and 1 blank page.

Section A

Answer all the questions in this section in the spaces provided.

The total mark for this section is 45.

A1 (a) Choose from the following elements to answer the questions.

calcium chlorine chromium copper krypton nitrogen oxygen sodium sulfur

Each element may be used once, more than once or not at all.

Which element:

(i)	is a monatomic gas,
	[1]
(ii)	makes up 78% of dry air,
	[1]
(iii)	has an oxide which reacts with the impurities in a blast furnace to form slag,
	[1]
(iv)	forms aqueous ions with a 2+ charge which give a dark blue solution on addition or excess aqueous ammonia,
	[1]
(v)	reacts with propane in the presence of ultraviolet light by a substitution reaction?
	[1

(b) Complete the table to show the number of electrons and number of neutrons in the sulfur atom and in the magnesium ion.

	number of electrons	number of neutrons
³³ S		
²⁵ Mg ²⁺		

[4]

[Total: 9]

A2 Copper(II) sulfate is an ionic compo	und
---	-----

(a)		scribe the arrangement of the ions and the type of attractive forces between the ions in d copper(${\rm II}$) sulfate.
	arra	ingement
	type	e of attractive forces[2]
(b)	-	plain why solid copper(II) sulfate does not conduct electricity but aqueous $per(\mathrm{II})$ sulfate does conduct.
		[2]
(c)	are	en aqueous copper(II) sulfate is electrolysed using platinum electrodes, copper(II) ions reduced to copper at the negative electrode. Oxygen is formed at the positive electrode oss of electrons from hydroxide ions.
	(i)	State the source of the hydroxide ions.
		[1]
	(ii)	Complete the equation for the reaction at the positive electrode.
		$OH^- \rightarrow O_2 + H_2O +$ [1]
	(iii)	Suggest why hydroxide ions and not sulfate ions are discharged at the positive electrode.
		[1]
(d)	(i)	Give the formulae of the four ions present in aqueous copper(II) sulfate.
		[1]
	(ii)	Suggest why the solution becomes acidic as the electrolysis proceeds.
		[2]
	(iii)	Suggest why the blue colour of the aqueous copper(II) sulfate fades as the electrolysis proceeds.
		[1]

(e) Draw a 'dot-and-cross' diagram of an oxygen molecule.

Show only the outer shell electrons.

[2]

[Total: 13]

Key

(+) metal ion

	A 3	The diagram	shows the	structure of	a metal
--	------------	-------------	-----------	--------------	---------

silver oxide

titanium(IV) oxide

		+ +	+++	-	electron	
(a)	Refe	er to this structure to exp	lain why			
	(i)	metals are malleable,				
				• • • • • • • • • • • • • • • • • • • •		
						[2]
	(ii)	metals conduct electrici				
						[1]
(b)	The	table shows the ease wi	th which differer	nt metal o	xides can be reduced.	
		metal oxide		ease of r	eduction	
		calcium oxide	not reduced by	y carbon a	at 1800°C	
		iron(III) oxide	reduced by car	bon at 65	50°C	

Use the information in the table to place the metals calcium, iron, silver and titanium in order of their reactivity.

reduced by heating without carbon

reduced by carbon at 1800 $^{\circ}\text{C}$ but \boldsymbol{not} at 650 $^{\circ}\text{C}$

least reactive				most reactive
least reactive			$\overline{}$	mostreactive

[1]

$$\mathrm{Fe_2O_3}$$
 + 3CO \rightarrow 2Fe + 3CO $_2$

(i)	Calculate the maximum mass of iron that can be formed when 14.4g of iron(III) oxide is
	reduced by excess carbon monoxide.

Give your answer to three significant figures.

(ii) Calculate the maximum volume of carbon dioxide, in dm³, produced by this reaction, at room temperature and pressure.

volume of carbon dioxide = dm³ [2]

[Total: 9]

A4 The structure of malic acid is shown.

(a)	Malic acid is a carboxylic acid because it contains a -COOH group.
	Malic acid also contains an –OH group.
	Name the homologous series of compounds which contain the -OH group.
	[1]
(b)	A diester of malic acid has the formula shown.
	$\mathrm{H_7C_3OOC-CH(OH)-CH_2-COOC_3H_7}$
	What reagent and conditions are needed to make this diester from malic acid?
	reagent
	conditions
	[2]
(c)	When heated, malic acid forms fumaric acid.
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	How can aqueous malic acid and aqueous fumaric acid be distinguished when aqueous bromine is added to a sample of each?
	[2]

(d) The structure of compound A is shown.

Compound A can undergo two types of polymerisation.

(i)	Name these two types of polymerisation.

(ii)	For one of these types of polymerisation	draw a section of	the polymer to show two
	repeat units.		

[2]

[Total: 9]

Hyd	Irocarbons undergo complete combustion to form carbon dioxide and water.	
(a)	Construct the equation for the complete combustion of butane, C_4H_{10} .	
	[2	2]
(b)	The combustion of butane is exothermic.	
	Explain in terms of bond making and bond breaking why this reaction is exothermic.	
	[2	2]
(c)	Petroleum (crude oil) fractions contain hydrocarbons.	
	Give one use of the paraffin (kerosene) fraction.	
	[1]
	[Total: 5	

BLANK PAGE

Section B

Answer three questions from this section in the spaces provided.

The total mark for this section is 30.

В6	Etha	hanoic acid is a weak acid.											
	(a)	What is meant by the term weak acid?											
			[1]										
	(b)	Etha	anoic acid reacts with ethanol to form ethyl ethanoate.										
		The	reaction is exothermic.										
			$CH_3COOH + C_2H_5OH \rightleftharpoons CH_3COOC_2H_5 + H_2O$										
		Des	cribe and explain the effect, if any, on the position of equilibrium when										
		(i)	the concentration of ethanol is increased,										
			[2]										
		(ii)	the temperature is increased.										
			[2]										

(c) The table shows some properties of four carboxylic acids.

carboxylic acid	formula	melting point /°C	boiling point /°C	density in the liquid state in g/cm ³
methanoic acid	нсоон	8.5	100.7	1.22
ethanoic acid	CH ₃ COOH	16.7	118.0	1.05
propanoic acid	C ₂ H ₅ COOH	-20.7	141.1	
butanoic acid	C ₃ H ₇ COOH	-4.4	165.6	0.96

(i)	How does the boiling point change as the number of carbon atoms in the formula of the carboxylic acids increases?
	[1]
(ii)	Estimate the density, in g/cm ³ , of liquid propanoic acid.
	density g/cm ³ [1]
(iii)	What is the physical state of ethanoic acid at 15.0 °C? Explain your answer.
	[1]
(iv)	Why is it difficult to predict the melting point of pentanoic acid, $\rm C_4H_9COOH$, using only the information from the table?
	[1]
(v)	Draw the structure of propanoic acid showing all of the atoms and all of the bonds.

[1]

[Total: 10]

B7 Some properties of the Group IV elements are shown in the table.

element	melting point /°C	relative electrical conductivity						
carbon (diamond)	3550	non-conductor						
silicon	1410	poor conductor						
germanium	937	poor conductor						
tin	232	conductor						
lead	328	conductor						

(a)	(i)	Explain in terms of structure and bonding why diamond has such a high melting point.	
		[2]
	(ii)	Use the information in the table to suggest how the type of structure and bonding carbon (diamond) differs from the type of structure and bonding in tin. Explain you answer.	
		[2]
	(iii)	Lead oxide is an amphoteric oxide.	
		What is the meaning of the term amphoteric oxide?	
		г	41

(b) A sample containing $64.5\,\mathrm{g}$ of a chloride of germanium contains $42.6\,\mathrm{g}$ of chlorine.

(i)	Deduce the empirical formula of this chloride.
	empirical formula[3]
(ii)	This chloride of germanium has a boiling point of 87 °C.
	Predict the structure and bonding of this chloride.
	[2]
	[Total: 10]

B8		centrated aqueous ammonia is used to make fertilisers such as ammonium phosphate, $_4)_3\mathrm{PO}_4.$
	(a)	Calculate the percentage by mass of nitrogen in ammonium phosphate.
	(b)	Explain why farmers spread nitrogen-containing fertilisers on their fields.
		[1]
	(c)	Describe a test for ammonia.
		test
		result[2]
	(d)	Explain why adding calcium hydroxide to the soil at the same time as ammonium phosphate results in loss of nitrogen from the soil.
		[2]

(e) Aqueous ammonia reacts with dilute sulfuric acid.

$$2\mathrm{NH_3(aq)} \ + \ \mathrm{H_2SO_4(aq)} \ \longrightarrow \ (\mathrm{NH_4)_2SO_4(aq)}$$

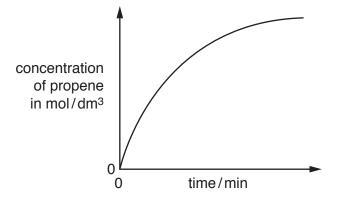
A student titrates 20.0 cm³ of aqueous ammonia with 0.150 mol/dm³ sulfuric acid.

10.5 cm³ of sulfuric acid is required to neutralise the aqueous ammonia.

Calculate the concentration, in mol/dm³, of the aqueous ammonia.

concentration of aqueous ammonia = mol/dm³ [3]

[Total: 10]

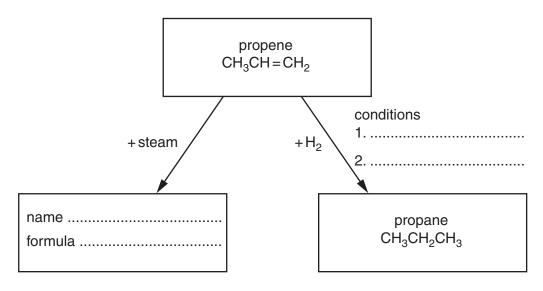

B9 Cyclopropane is converted to propene when heated.

$$H_2C$$
 CH_2
 $CH_3CH=CH_2$
cyclopropane

(a) Explain why cyclopropane and propene are isomers.

_____[1]

(b) The graph shows how the concentration of propene in this reaction changes with time.



	Describe how the rate of this reaction changes with time. Explain your answer by referring to the graph.
	[2]
(c)	Describe and explain the effect of increasing the concentration of cyclopropane on the rate of this reaction.
	[2]
(d)	Describe and explain the effect of decreasing the temperature on the rate of this reaction.

.....[2]

(e) Propene undergoes addition reactions. Two addition reactions of propene are shown in the diagram.

Complete the diagram to show the missing name, formula and conditions.

[Total: 10]

[3]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

S
Ξ
Φ
Ξ
Φ
Ш
4
P
able
9
<u>.</u> ه
\vdash
<u>ပ</u>
혓
eri
a
4
The
ᅩ

\equiv	²	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon			
=>			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ā	bromine 80	53	П	iodine 127	85	Αŧ	astatine -			
>			80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>L</u>	tellurium 128	84	Ъо	moloum –	116	_	livermorium -
>			7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	:E	bismuth 209			
≥			9	ပ	carbon 12	41	SS	silicon 28	32	Ge	germanium 73	20	S	tin 119	82	Ъ	lead 207	114	Εl	flerovium -
=			2	В	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
						•			30	Zu	zinc 65	48	පි	cadmium 112	80	Нg	mercury 201	112	ပ်	copemicium —
									29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -
									28	Ë	nickel 59	46	Pd	palladium 106	78	₽	platinum 195	110	Ds	darmstadtium -
									27	ပိ	cobalt 59	45	格	rhodium 103	77	'n	iridium 192	109	Μ̈́	meitnerium -
	- エ	hydrogen 1							26	Ьe	iron 56	44	Ru	ruthenium 101	9/	Os	osmium 190	108	Hs	hassium -
									25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium —
			_	pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
		Key	atomic number	mic sym	name ative atomic ma				23	>	vanadium 51	41	qN	niobium 93	73	д	tantalum 181	105	Оþ	dubnium –
				atc	rek				22	i=	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	꿆	rutherfordium -
									21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	လွ	strontium 88	26	Ва	barium 137	88	Ra	radium -
_			3	:=	lithium 7	=	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	S	caesium 133	87	ᇁ	francium -
			1	III IV V VII VII VII VII VII VII VII VII	II	II	II	II	II	II	II	III	II	II	III	II	1 1 1 1 1 1 1 1 1 1	H	1	Harmonian Harm

71	'n	lutetium	175	103	۲	lawrencium	I
70	Υp	ytterbium	173	102	8	nobelium	I
69	T	thulium	169	101	Md	mendelevium	I
89	Щ	erbinm	167	100	Fm	ferminm	I
29	웃	holmium	165	66	Es	einsteinium	I
99	Ò	dysprosium	163	86	ర	califomium	I
65	Д	terbium	159	97	Ř	berkelium	ı
64	Gd	gadolinium	157	96	Cm	curium	ı
63	En	europium	152	92	Am	americium	ı
62	Sm	samarium	150	94	Pu	plutonium	ı
61	Pm	promethium	ı	93	Ν	neptunium	ı
09	ρN	neodymium	144	92	\supset	uranium	238
29	Ą	praseodymium	141	91	Ра	protactinium	231
58	Ce	cerium	140	06	┖	thorium	232
22	Гa	lanthanum	139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).